extension ExtPose

Site RAG

CRX id

flahfjkiodmmchhbdieaihdcpmbofnak-

Description from extension meta

A Chrome extension for question-answer over websites

Image from store Site RAG
Description from store # Site RAG [Demo video](https://www.loom.com/share/2ee8496a17774577b2684d6b2981bd1a) ![Screenshot of Site RAG Chrome extension](./public/screenshot.png) A Chrome extension for asking questions over websites. Site RAG can index a single page of the website, or crawl the entire site. It then generates embeddings for the indexed documents, and stores them in a vector store database. When a user asks a question, Site RAG will either fetch relevant documents from the current page, or the entire site (customizable). ## Requirements - [Anthropic API key](https://console.anthropic.com/) - For LLM chat generations - [OpenAI API key](https://platform.openai.com/) - For embeddings - [Supabase account](https://supabase.com/) - For vector store ## Setup First, clone the repository: ```bash git clone https://github.com/bracesproul/site-rag.git ``` ```bash cd site-rag ``` Then, install the dependencies: ```bash yarn install ``` and build: ```bash yarn build ``` ### Vector store To setup the vector store, you need to create a Supabase database. Then, inside the SQL editor, run the following: ```sql -- Enable the pgvector extension to work with embedding vectors create extension vector; -- Create a table to store your documents create table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(3072) -- 3072 works for OpenAI embeddings, change if needed ); -- Create a function to search for documents create function match_documents ( query_embedding vector(3072), match_count int DEFAULT null, filter jsonb DEFAULT '{}' ) returns table ( id bigint, content text, metadata jsonb, embedding jsonb, similarity float ) language plpgsql as $$ #variable_conflict use_column begin return query select id, content, metadata, (embedding::text)::jsonb as embedding, 1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count; end; $$; ``` ## Usage To use the extension, go to [chrome://extensions/](chrome://extensions/) and click "Load unpacked". From there, select the `dist` directory of this repository. Once loaded, open the extension and visit the settings page. Here you can add your API keys, and Supabase credentials. You can also customize the indexing settings, such as chunk size and overlap.

Statistics

Installs
111 history
Category
Rating
0.0 (0 votes)
Last update / version
2025-02-06 / 0.0.1
Listing languages

Links